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Abstract—A novel classifier architecture is introduced and its 
performances are evaluated against state of the art shallow 
classifiers. Its main advantage consists in a very fast learning 
ensured by a novelty detection algorithm, selecting a list of 
prototypes among the training samples, used as centers in a radial 
basis functions neurons layer. Only the radius of the basis 
functions is optimized to improve generalization in conjunction 
with an overlapping parameter and there is no need for synaptic 
tuning. Compared to state of the art models such as SVM 
(Support Vector Machine) or ELM (Extreme Learning Machine) 
our SFSVC (Super Fast Vector Support Classifier) it offers equal 
performance while having a more compact and fast algorithm. 
Thus SFSVC is well suited for embedded processing of big 
collections of data such as data from satellite remote sensing 
units, automotive sensors etc. with a good potential of being 
directly integrated into sensing platforms.  

Keywords- machine learning; neural networks; radial basis 
functions; extreme learning machines; support vector machines. 

I.  INTRODUCTION 

In various fields big amount of data has to be classified 
based on some labeled collections (training samples). 
Particularly interesting applications are in the field of image 
processing where large collections of pixels have to be 
classified into a finite set of M classes. Classification of remote 
sensing satellite imagery or data received from automotive 
sensing units, are yet another example of computationally 
intensive image processing algorithms. Recent works [1] 
investigate both the possibility to improve performance (e.g. 
recognition accuracy) while providing efficient and fast 
algorithms to cope with the high dimensionality of the available 
data (large sizes n of the feature vectors and large numbers N of 
training samples). It is therefore important to design classifiers 
that are capable to offer best performance (here we consider the 
overall accuracy – as defined in [1]) while having also a simple 
algorithm description (allowing thus very high speed 
implementations in technologies such as FPGA or GPU) and 
fast learning.  

While recently deep learning [2] solutions are widely 
considered in Big Data problems, due to their ability to learn 
automatically the best feature extractor in the first hidden 
layers, they still remain computationally intensive in the 
learning phase. Shallow networks usually offer faster 
alternatives assuming that good feature extractors are designed 
using problem specific hand-crafted methods, adaptive 
projection solutions (PCA, kernel-PCA etc.) or more recently, 

various forms of receptive fields [3].  Consequently in this work 
we focus on a shallow-type classifier which can be regarded as 
a special case of single layer feed-forward neural network 
(SLFN). We show that in a C++ implementation it is faster than 
similar implementations of ELM or SVM and has a series of 
advantages making it a very good candidate for specialized 
hardware/software solutions (FPGA, GPU) including low-
power integration with sensors.   

Among shallow neural networks, extreme learning 
machines [4] are widely regarded as being very fast classifiers 
while they are governed by a very simple idea, namely 
replacing any complicated algorithm for tuning weights in the 
hidden layers with simply generating them randomly. The 
output layer is the only tunable, using pseudo-inverse methods. 
The NoProp network proposed recently [5] replaces pseudo-
inverse methods with the classic LMS algorithm in the output 
Adaline layer while the units in the hidden layer are ELM-style 
trained. In a correspondence with the ELM authors, Widrow 
claims superiority of LMS, particularly for large number of 
hidden neurons. His claim is verified by us, as detailed in the 
ELM experiments presented herein. Other limitations of the 
ELM are: (i) the need to store a huge amount of randomly 
generated weight parameters; (ii) the need to implement the 
sophisticated pseudo-inverse algorithm – not very amenable for 
VLSI-oriented or sensor-integrated solutions. The (i) limitation 
also stands for NoProp and is removed in support vector 
approaches (parameters are readily available in the training set). 
Another widely used classifier is the SVM (support vector 
machine) which essentially constructs a hidden layer based on 
kernels (equivalent to RBF neurons) centered on the “support 
vectors”. These vectors represent a sub-set from the training set 
selected during training such that generalization performance is 
maximized. Although very accurate, the SVM training 
algorithms have a limitation: (iii) they are complex and not very 
amenable for VLSI or other hardware-platform implementation. 
Besides, allowable kernels (not necessarily the ones optimizing 
the hardware implementations) are restricted by the Mercer 
condition to several types only. The SVM is a data oriented 
paradigm, so it removes the ELMs limitation (i) since the 
support vectors are already available in the training set. Another 
limitation of both SVM and ELM is: (iv) the need to optimize 
the regularization parameter C. In all RBF-unit based models 
one needs to optimize the kernel parameter γ (equivalent to 
RBF radius). In [6] under the name RBF-M we first introduced, 
another approach, recently called “fast support vector classifier” 
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(FSVC) and proved in a series of papers (e.g. [7][8]) to have 
equivalent performance to SVM and ELM while being also 
defined by simple learning algorithms and kernel units which 
are rather convenient in high-speed solutions to be implemented 
in hardware-oriented platforms1. As in SVM, FSVC selects a 
subset of m input samples as “support vectors” from a set of N 
training samples; these support vectors becoming centers of the 
RBF kernels. Unlike in SVM, a simple novelty detection 
algorithm allowing any type of kernel (RBF-unit) is employed 
to select support vectors thus removing limitation (iii). During a 
single epoch, for each new input sample the activity of the 
actual hidden layer is evaluated and if it is below of a certain 
overlapping coefficient ov a new support vector is added (it is 
actually the input sample producing this effect) corresponding 
to the addition of a new RBF unit on the hidden layer. Like in 
the NoProp, the output Adaline is tuned using LMS thus 
removing limitations (ii) and (iv).   

Herein, SFSVC (super fast support vector classifier) was 
developed as a faster improvement of the FSVC classifier 
algorithm in [7]. Algorithms were written in C++ then 
embedded in .MEX files for an easy interface with Octave or 
Matlab. This allows a fair comparison with ELM2 and SVM 
readily available implementations [9]. The SFSVC differs from 
FSVC in two respects: (i) a supervised version of the novelty 
algorithm for selection of centers is considered, while FSVC 
used an unsupervised algorithm. This approach improved both 
the performance and the speed of the hidden layer construction 
phase; (ii) There is no tuning of the output layer; the synapses 
of the output Adaline were simply initialized with the desired 
output values from the training set. This leads to an extremely 
simple learning algorithm thus eliminating most of the 
disadvantages of the ELM, NoProp and SVM models. The 
architecture and learning algorithm for SFSVC is detailed in 
Section II while Section III presents a synthesis of the 
performances, including comparisons with ELM and SVM 
implementations. Concluding remarks are given in Section IV. 

II. SFSVC ARCHITECTURE AND TRAINING ALGORITHM

A. The classifier  deffinition and architecture
In order to define the architecture and the algorithms for

training and prediction the following shall be defined. 

The training set ( ){ }kkTR dx ,=  where Nk ,..1= is the
sample index, N is the number of samples,

( )knkikk xxx ,,,1 ,..,..=x  is an input (feature) vector, n is the
dimension of the feature vector. For classification problems it is 
assumed that the desired output vector is formed of 0 valued 
elements except 1, =kjd  indicating that the sample k belongs 
to class “j” among all possible M classes.  In a SFSVC structure 

{ }1,0, ∈kjd are also the synapses of the output layer thus
making the product operation un-necessary (the weighted sum 

1 A Matlab implementation of the FSVC is given at 
http://www.mathworks.com/matlabcentral/fileexchange/4969 
5-fast-support-vector-classifier--a-low-complexityalternative- 
to-svm-/
2 Adapted code from http://dovgalecs.com/blog/extreme-learning-machine-
matlab-mex-implementation/ was considered in our implementations.

now becomes a sum of those terms with non-zero kjd , value). 
The test set TS has a similar structure yet contains different Ns 
samples and it is used only to evaluate the generalization 
performance of the classifier. Overall accuracy (Acc.) is 
considered herein as a performance measure. It represents the 
fraction of correctly assigned samples in the test set.  

RBF units and radius: It is assumed that each hidden 
neuron unit is defined by a RBF function where a distance 
between the actual input sample ( )ni uuu ,..,..1=u  and the 
corresponding support vector (centroid) ( )ni ccc ,..,..1=c  can be
computed in any desired way. In this work we discuss of 
dtype=1 distance in the case of Hamming distance 

−=
=

n

i
ii cud

1
 and dtype=2 in the case of the Euclidean one. 

Any other distance formula can be considered. As for the RBF 
functions, there is a wide palette of possibilities and no 
restriction, herein we consider only rbftype=1 for a simple 
(hardware-oriented) triangular function defined as: 

( ) )/4.01,0max(, rdrdRBF −=  and rbftype=2 for the classic
(but not so convenient for hardware-oriented) Gaussian 
kernel ( )22 2/exp),( rdrdRBF −= . In all case the radius r is an
important parameter and is basically the main one tunable 
parameter that has to be optimized to ensure best generalization 
performance. As seen later, a finer tuning may be considered in 
using the ov (overlap factor) which is implicitly taken as 1=ov .  

The index table TIX: To operate in prediction mode in 
addition to the TR set assumed as stored in a memory, an index
table { }mp iiiiTIX ,..,.., 21=  is needed (resulted after the training
process); it stores integer values locating the selected support 
vector among the feature vectors in the TR. Consequently, the p 
RBF-neuron of the hidden layer has the support vector

pip xc =

as centroid. 

SFSVC Prediction algorithm: 

1. FOR j=1,..M  sc(j)=0;  END // initialize output scores
2. FOR p=1 .. m
3. k = TIX(p)= pi    // locate the center in TR

4. ( )kdistd xu,=
5. z = RBF(d,r)    // calculate the output of the hidden layer
6. FOR j=1,..M    // calculate the output scores
7. IF 0, ≠kjd  sc(j) = sc(j)+z ;  END
8. END
9. END
10. Predicted_class= Arg(max(sc))

Only simple arithmetic operations are invoked in the
prediction algorithm, and the computation of the output scores 
reduces to only m summations. Lines 3, 4 and 7 require 
memory access (where the train set and the TIX matrix are 
stored) while the rest of the algorithm can be simply 
implemented as a state machine controlling the memory access. 
This makes the algorithm particularly suitable for FPGA 
implementation.  In the above, lines 4 and 5 take most of the 
computing time so it is reasonable to consider that the 
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computational complexity 2t  of the algorithm is roughly 
)(mnO  i.e. linear in the number of hidden units. Experimental 

results confirm the above allowing evaluate the efficiency of a 
specific implementation by computing a specific execution time 

ext  (expressed in ns per RBF unit, input and sample). Using the 
same computing platform for our SFSVC and ELM 
implementations a characteristic value 5.4=ext  is achieved 
while the LIBSVM from [9] for the same RBF hidden layer 
achieves 95.1=ext . This indicates that our implementation may 
be further optimized (speed problems may be related to the use 
of Eigen3 library 3 , not used in LIBSVM). But this also 
indicates that for a fair comparisons of algorithms (regardless of 
their particular implementation) when compared to SVM a 
correction factor of 0.435 must be considered for the hidden 
layer times t2 measured in both SFSVC and ELM.  

B. Constructing the hidden layer via novelty detection
The training of SFSVC algorithm actually reduces to the

construction of the TIX matrix. Also, the radius r parameter 
(and in addition the ov) must be tune until the best 
generalization performance is obtained on the test set. A 
convenient tuning procedure starts with 256=r  (under-fitting, 
small m) and then divides the radius by 2 while looking for 
performance improvement (increasing the number m of units). 
When a radius value or is achieved indicating over-fitting 
(generalization performance starts worsen) one may finely 
explore the radius range [ ]oo rr 2,  for the best accuracy. Fine
tuning of ov in the range [0.1, 2] may also produce 
improvements in the accuracy. Usually, about 20 trials suffice 
to locate the best performance. A tuned version (herein called 
SFSVC-T) of the algorithm is also implemented since it was 
found that accuracy can be slightly improved up to the value 
obtained with the SVM (usually the best): The output Adaline 
weights are initialized as in the SFSVC model but they are 
corrected using the simple LMS rule during 4 additional 
training epochs. As seen next, the un-tuned version (SFSVC) 
allows very fast speeds at similar performance.  

Training algorithm (TIX matrix construction): In the 
following the supervised training algorithm (i.e. construction of 
the hidden layer as a index matrix TIX) is presented for a 
generic class “j”. It is first applied for j=1. Then the same 
algorithm iterates for the patterns of the next class and so on 
adding new elements to TIX until all samples in the training set 
TR are exhausted.  

1. TIX(1) = j1 // index of first sample in class “j”
2. m=1  // first hidden RBF unit
3. FOR all remaining samples (i=2,..mj) in class “j”
4. ACT =0;   // initialize the activity
5. FOR k=1,..m  // for all existent RBF units
6. d=dist )( )( ikTIX xx −
7. ACT=ACT+RBF(d,r)
8. END
9. IF ACT<ov
10. m=m+1;  // add new RBF unit

3 http://eigen.tuxfamily.org/index.php?title=Main_Page 

11. TIX(m)=i;
12. END
13. END.

Lines 9-12 implement the novelty detection for creating a new 
hidden RBF unit.  

III. EXPERIMENTAL RESULTS 

In order to asses the performances of the SFSVC algorithm 
and compare with other classifiers 5 representative datasets 
were considered. The first two datasets are from satellite 
imagery problems as follows: SATIMG is a classic database 
from [11] (n=36, M=6 classes, N=3217 training samples, 
Ns=3218 testing samples) while IN6 is a reduced set (n=200, 
M=16, N=2000, M=3000) from the original Indian Pine dataset 
used in [1]. In both cases a class (asphalt, lake, etc.) has to be 
assigned to a hyper-spectral pixel vector from the remote 
sensing device. In the last 3 datasets input samples are images 
of handwritten characters. OPTD64 is from [11] and has 8x8 
pixels per character (n=64, M=10, N=3823, Ns=1797), USPS 
is a well known database [12] available from [9] with 16x16 
pixels per character (n=256, M=10, N=7291, Ns=2007) and 
MNIST is a reduced set from the original MNIST4 where a 
small fraction of samples was randomly selected from the 
original dataset (N=500 for training and Ns=100 for testing). 
Each sample represents an image with n=28x28 pixels.  

A. Accuracies and optimal structures
A synthetic view of the best overall accuracies obtained for

the considered databases with all classifier architectures is 
given in Fig.1. For each case the architecture was optimized 
(radius r and overlap factor ov, type of radial basis and 
distance) for best performance.  

Figure 1.  Overall accuracies for the optimized classifiers. 

As seen, SFSVC allows obtaining overall accuracies that 
are only slightly under the best attainable (usually via SVM). 
With additional LMS tuning SFSVC-T reaches the best values. 
Details on the optimized structure and training times for 
SFSVC, SFSVC-T, ELM and SVM are given in tables I-IV. In 
all cases except SVM training times 321 tttt ++=  with 1t  time 
allocated to TIX generation (or ELM random gen. of weights), 

2t time to compute the hidden and output layer and 3t time 
allocated to training of the output Adaline (or ELM training 
using pseudo-inverse training). Note that in the case of SFSVC 
very fast learning is achieved because computing the hidden 
layer and training is not necessary, thus 1tt = . For SVM, only 
total training time is given.  Two types of RBF units are 

4 Available: http://yann.lecun.com/exdb/mnist/ 
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considered: type=1 (triangular basis function + Manhattan 
distance) and type=2 (Gaussian basis function + Euclidean 
distance). 

TABLE I: OPTIMAL STRUCTURES AND PERFORMANCE FOR SFSVC 

Optimal SATIMG IN6 OPTD64 USPS MNIST 
(r,ov,type) 0.23, 1.2, 2 0.9, 1.3, 1 7.7, 3, 1 2.95, 

0.75, 2 
5.3, 0.1, 

2 
t=t1 0.14 0.14 0.1 0.56 0.027

Acc. % 91.36 75.6 98.44 94.32 87 
RBF units 1418 1331 1230 1141 215 

TABLE II: OPTIMAL STRUCTURES AND PERFORMANCE FOR SFSVC-T 

Optimal SATIMG IN6 OPTD64 USPS MNIST 
(r,ov,type) 0.25, 1, 2 1.3 4,  1 7.7, 3, 1 3.3, 1, 2 5.8, 2, 2 
t1, t2 t3  0.08, 0.98, 

0.62 
0.1, 2, 0.7 0.06, 1.2, 

0.77 
0.38, 

7.2, 1.1 
0.02, 
0.6, 0.1 

Acc. % 91.61 79.1 98.44 95.21 88 
RBF units 1144 1290 1230 914 434 

TABLE III: OPTIMAL STRUCTURES AND PERFORMANCE FOR ELM (C=107) 

Optimal SATIMG IN6 OPTD64 USPS MNIST 
r (type=2) 2 5 8 18 7 
  T1, t2 t3 0, 0.92, 5 0, 2.4, 4.6 0, 0.9, 2.1 0, 7, 7 0, 0.54, 

0.1 
Acc. % 88,16 77.9 98.1 94.22 80 

RBF units 1144 1353 695 903 378 

TABLE IV: OPTIMAL STRUCTURES AND PERFORMANCE FOR SVM (C=10) 

Optimal SATIM
G 

IN6 OPTD64 USPS MNIST 

γ (type=2) 1.62 2.8 0.046 0.01 6.4*10-4

  T1+t2+t3 1.29 3.04 1.45 8.41 0.86 
Acc. % 91.61 79.6 98.44 95.47 90 

RBF units 1219 1346 1076 1521 356 

A synthetic view of the acceleration obtained by the SFSVC 
algorithm with respect to the other well known algorithms 
(SVM, ELM) and the tuned variant SFSVC-T is given in Table 
V. ) The same computational platform (a laptop with Pentium
2-core CPU T4300@2.1Ghz  3Gbyte RAM) was used and all
algorithms were implemented in C++ compiled as .MEX files
called in Octave 4 to facilitate user interface.

TABLE V: SPEED-UP OF SFSVC WITH RESPECT TO OTHER CLASSIFIERS  

Speed-up 
(related to) 

SATIM
G 

IN6 OPTD64 USPS MNIST 

SVM 9.21   21.7   14.5   15.0 31.9 

ELM 42.3    50.0    30.0    25.0   23.7 
SFSVC-T 12.0   20.0    20.3   15.5    26.7 

As seen, our new algorithm ensures significant speed-ups of 
up to 50 times (for IN6 remote sensing problem with respect to 
the usually credited as very fast ELM classifier. In addition we 
considered a bigger version of the MNIST (25% of the original 
one, to fit with our memory) and the optimized SFSVC with 
(r,ov,type) = (4.55 0.15 2) trained this large dataset in only 10.6 
seconds using 3559 neurons and achieving 94.2% accuracy.  

IV. CONCLUSIONS

A novel type of single-layer classifier architecture, namely 
the SFSVC is proposed, where support vectors for RBF hidden 

units are selected using a fast supervised (class-dependent) 
novelty detection algorithm and no additional training of the 
output Adaline (weights in the output layer are assigned directly 
to the desired output values assuming that only hidden units 
from a class are activated for a given input sample). Results are 
extremely encouraging showing speedups of 10 to 50 times 
with respect to the ELM (usually credited as very fast learning 
paradigm) or SVM, while the obtained accuracies are close to 
best attainable using well optimized SVM (typically the loss is 
smaller than 1% in SFSVC) . The main speed-up reasons are: i) 
eliminating the computation of the hidden layer and of the 
output weights training; ii) the use of a supervised selection of 
hidden units (a speedup of 1t around M the number of classes 
was determined with respect to the unsupervised version 
implemented in FSVC [6-8]. Another important advantage of 
SFSVC is the extreme simplicity of the training algorithm and 
the versatility of basis functions. Consequently it is very well 
suited for embedding in specialized computing platforms (e.g. 
GPU, FPGA) and for integration into satellite or automotive 
sensing units thus ensuring the processing of big-data directly at 
the sensor level, such implementations being the subject of our 
further research.      
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