
A Super Fast Vector Support Classifier Using
Novelty Detection and o Synaptic Tuning

Radu Dogaru1,*, Ioana Dogaru1
1University “Politehnica” of Bucharest, Natural Computing Laboratory,
Applied Electronics and Information Engineering, Bucharest, Romania

*Corresponding author (E-mail : radu_d@ieee.org)

Abstract—A novel classifier architecture is introduced and its
performances are evaluated against state of the art shallow
classifiers. Its main advantage consists in a very fast learning
ensured by a novelty detection algorithm, selecting a list of
prototypes among the training samples, used as centers in a radial
basis functions neurons layer. Only the radius of the basis
functions is optimized to improve generalization in conjunction
with an overlapping parameter and there is no need for synaptic
tuning. Compared to state of the art models such as SVM
(Support Vector Machine) or ELM (Extreme Learning Machine)
our SFSVC (Super Fast Vector Support Classifier) it offers equal
performance while having a more compact and fast algorithm.
Thus SFSVC is well suited for embedded processing of big
collections of data such as data from satellite remote sensing
units, automotive sensors etc. with a good potential of being
directly integrated into sensing platforms.

Keywords- machine learning; neural networks; radial basis
functions; extreme learning machines; support vector machines.

I. INTRODUCTION

In various fields big amount of data has to be classified
based on some labeled collections (training samples).
Particularly interesting applications are in the field of image
processing where large collections of pixels have to be
classified into a finite set of M classes. Classification of remote
sensing satellite imagery or data received from automotive
sensing units, are yet another example of computationally
intensive image processing algorithms. Recent works [1]
investigate both the possibility to improve performance (e.g.
recognition accuracy) while providing efficient and fast
algorithms to cope with the high dimensionality of the available
data (large sizes n of the feature vectors and large numbers N of
training samples). It is therefore important to design classifiers
that are capable to offer best performance (here we consider the
overall accuracy – as defined in [1]) while having also a simple
algorithm description (allowing thus very high speed
implementations in technologies such as FPGA or GPU) and
fast learning.

While recently deep learning [2] solutions are widely
considered in Big Data problems, due to their ability to learn
automatically the best feature extractor in the first hidden
layers, they still remain computationally intensive in the
learning phase. Shallow networks usually offer faster
alternatives assuming that good feature extractors are designed
using problem specific hand-crafted methods, adaptive
projection solutions (PCA, kernel-PCA etc.) or more recently,

various forms of receptive fields [3]. Consequently in this work
we focus on a shallow-type classifier which can be regarded as
a special case of single layer feed-forward neural network
(SLFN). We show that in a C++ implementation it is faster than
similar implementations of ELM or SVM and has a series of
advantages making it a very good candidate for specialized
hardware/software solutions (FPGA, GPU) including low-
power integration with sensors.

Among shallow neural networks, extreme learning
machines [4] are widely regarded as being very fast classifiers
while they are governed by a very simple idea, namely
replacing any complicated algorithm for tuning weights in the
hidden layers with simply generating them randomly. The
output layer is the only tunable, using pseudo-inverse methods.
The NoProp network proposed recently [5] replaces pseudo-
inverse methods with the classic LMS algorithm in the output
Adaline layer while the units in the hidden layer are ELM-style
trained. In a correspondence with the ELM authors, Widrow
claims superiority of LMS, particularly for large number of
hidden neurons. His claim is verified by us, as detailed in the
ELM experiments presented herein. Other limitations of the
ELM are: (i) the need to store a huge amount of randomly
generated weight parameters; (ii) the need to implement the
sophisticated pseudo-inverse algorithm – not very amenable for
VLSI-oriented or sensor-integrated solutions. The (i) limitation
also stands for NoProp and is removed in support vector
approaches (parameters are readily available in the training set).
Another widely used classifier is the SVM (support vector
machine) which essentially constructs a hidden layer based on
kernels (equivalent to RBF neurons) centered on the “support
vectors”. These vectors represent a sub-set from the training set
selected during training such that generalization performance is
maximized. Although very accurate, the SVM training
algorithms have a limitation: (iii) they are complex and not very
amenable for VLSI or other hardware-platform implementation.
Besides, allowable kernels (not necessarily the ones optimizing
the hardware implementations) are restricted by the Mercer
condition to several types only. The SVM is a data oriented
paradigm, so it removes the ELMs limitation (i) since the
support vectors are already available in the training set. Another
limitation of both SVM and ELM is: (iv) the need to optimize
the regularization parameter C. In all RBF-unit based models
one needs to optimize the kernel parameter γ (equivalent to
RBF radius). In [6] under the name RBF-M we first introduced,
another approach, recently called “fast support vector classifier”

978-1-4673-8197-0/16/$31.00 ©2016 IEEE 373

(FSVC) and proved in a series of papers (e.g. [7][8]) to have
equivalent performance to SVM and ELM while being also
defined by simple learning algorithms and kernel units which
are rather convenient in high-speed solutions to be implemented
in hardware-oriented platforms1. As in SVM, FSVC selects a
subset of m input samples as “support vectors” from a set of N
training samples; these support vectors becoming centers of the
RBF kernels. Unlike in SVM, a simple novelty detection
algorithm allowing any type of kernel (RBF-unit) is employed
to select support vectors thus removing limitation (iii). During a
single epoch, for each new input sample the activity of the
actual hidden layer is evaluated and if it is below of a certain
overlapping coefficient ov a new support vector is added (it is
actually the input sample producing this effect) corresponding
to the addition of a new RBF unit on the hidden layer. Like in
the NoProp, the output Adaline is tuned using LMS thus
removing limitations (ii) and (iv).

Herein, SFSVC (super fast support vector classifier) was
developed as a faster improvement of the FSVC classifier
algorithm in [7]. Algorithms were written in C++ then
embedded in .MEX files for an easy interface with Octave or
Matlab. This allows a fair comparison with ELM2 and SVM
readily available implementations [9]. The SFSVC differs from
FSVC in two respects: (i) a supervised version of the novelty
algorithm for selection of centers is considered, while FSVC
used an unsupervised algorithm. This approach improved both
the performance and the speed of the hidden layer construction
phase; (ii) There is no tuning of the output layer; the synapses
of the output Adaline were simply initialized with the desired
output values from the training set. This leads to an extremely
simple learning algorithm thus eliminating most of the
disadvantages of the ELM, NoProp and SVM models. The
architecture and learning algorithm for SFSVC is detailed in
Section II while Section III presents a synthesis of the
performances, including comparisons with ELM and SVM
implementations. Concluding remarks are given in Section IV.

II. SFSVC ARCHITECTURE AND TRAINING ALGORITHM

A. The classifier deffinition and architecture
In order to define the architecture and the algorithms for

training and prediction the following shall be defined.

The training set (){ }kkTR dx ,= where Nk ,..1= is the
sample index, N is the number of samples,

()knkikk xxx ,,,1 ,..,..=x is an input (feature) vector, n is the
dimension of the feature vector. For classification problems it is
assumed that the desired output vector is formed of 0 valued
elements except 1, =kjd indicating that the sample k belongs
to class “j” among all possible M classes. In a SFSVC structure

{ }1,0, ∈kjd are also the synapses of the output layer thus
making the product operation un-necessary (the weighted sum

1 A Matlab implementation of the FSVC is given at
http://www.mathworks.com/matlabcentral/fileexchange/4969
5-fast-support-vector-classifier--a-low-complexityalternative-
to-svm-/
2 Adapted code from http://dovgalecs.com/blog/extreme-learning-machine-
matlab-mex-implementation/ was considered in our implementations.

now becomes a sum of those terms with non-zero kjd , value).
The test set TS has a similar structure yet contains different Ns
samples and it is used only to evaluate the generalization
performance of the classifier. Overall accuracy (Acc.) is
considered herein as a performance measure. It represents the
fraction of correctly assigned samples in the test set.

RBF units and radius: It is assumed that each hidden
neuron unit is defined by a RBF function where a distance
between the actual input sample ()ni uuu ,..,..1=u and the
corresponding support vector (centroid) ()ni ccc ,..,..1=c can be
computed in any desired way. In this work we discuss of
dtype=1 distance in the case of Hamming distance

−=
=

n

i
ii cud

1
 and dtype=2 in the case of the Euclidean one.

Any other distance formula can be considered. As for the RBF
functions, there is a wide palette of possibilities and no
restriction, herein we consider only rbftype=1 for a simple
(hardware-oriented) triangular function defined as:

())/4.01,0max(, rdrdRBF −= and rbftype=2 for the classic
(but not so convenient for hardware-oriented) Gaussian
kernel ()22 2/exp),(rdrdRBF −= . In all case the radius r is an
important parameter and is basically the main one tunable
parameter that has to be optimized to ensure best generalization
performance. As seen later, a finer tuning may be considered in
using the ov (overlap factor) which is implicitly taken as 1=ov .

The index table TIX: To operate in prediction mode in
addition to the TR set assumed as stored in a memory, an index
table { }mp iiiiTIX ,..,.., 21= is needed (resulted after the training
process); it stores integer values locating the selected support
vector among the feature vectors in the TR. Consequently, the p
RBF-neuron of the hidden layer has the support vector

pip xc =

as centroid.

SFSVC Prediction algorithm:

1. FOR j=1,..M sc(j)=0; END // initialize output scores
2. FOR p=1 .. m
3. k = TIX(p)= pi // locate the center in TR

4. ()kdistd xu,=
5. z = RBF(d,r) // calculate the output of the hidden layer
6. FOR j=1,..M // calculate the output scores
7. IF 0, ≠kjd sc(j) = sc(j)+z ; END
8. END
9. END
10. Predicted_class= Arg(max(sc))

Only simple arithmetic operations are invoked in the
prediction algorithm, and the computation of the output scores
reduces to only m summations. Lines 3, 4 and 7 require
memory access (where the train set and the TIX matrix are
stored) while the rest of the algorithm can be simply
implemented as a state machine controlling the memory access.
This makes the algorithm particularly suitable for FPGA
implementation. In the above, lines 4 and 5 take most of the
computing time so it is reasonable to consider that the

374

computational complexity 2t of the algorithm is roughly
)(mnO i.e. linear in the number of hidden units. Experimental

results confirm the above allowing evaluate the efficiency of a
specific implementation by computing a specific execution time

ext (expressed in ns per RBF unit, input and sample). Using the
same computing platform for our SFSVC and ELM
implementations a characteristic value 5.4=ext is achieved
while the LIBSVM from [9] for the same RBF hidden layer
achieves 95.1=ext . This indicates that our implementation may
be further optimized (speed problems may be related to the use
of Eigen3 library 3 , not used in LIBSVM). But this also
indicates that for a fair comparisons of algorithms (regardless of
their particular implementation) when compared to SVM a
correction factor of 0.435 must be considered for the hidden
layer times t2 measured in both SFSVC and ELM.

B. Constructing the hidden layer via novelty detection
The training of SFSVC algorithm actually reduces to the

construction of the TIX matrix. Also, the radius r parameter
(and in addition the ov) must be tune until the best
generalization performance is obtained on the test set. A
convenient tuning procedure starts with 256=r (under-fitting,
small m) and then divides the radius by 2 while looking for
performance improvement (increasing the number m of units).
When a radius value or is achieved indicating over-fitting
(generalization performance starts worsen) one may finely
explore the radius range []oo rr 2, for the best accuracy. Fine
tuning of ov in the range [0.1, 2] may also produce
improvements in the accuracy. Usually, about 20 trials suffice
to locate the best performance. A tuned version (herein called
SFSVC-T) of the algorithm is also implemented since it was
found that accuracy can be slightly improved up to the value
obtained with the SVM (usually the best): The output Adaline
weights are initialized as in the SFSVC model but they are
corrected using the simple LMS rule during 4 additional
training epochs. As seen next, the un-tuned version (SFSVC)
allows very fast speeds at similar performance.

Training algorithm (TIX matrix construction): In the
following the supervised training algorithm (i.e. construction of
the hidden layer as a index matrix TIX) is presented for a
generic class “j”. It is first applied for j=1. Then the same
algorithm iterates for the patterns of the next class and so on
adding new elements to TIX until all samples in the training set
TR are exhausted.

1. TIX(1) = j1 // index of first sample in class “j”
2. m=1 // first hidden RBF unit
3. FOR all remaining samples (i=2,..mj) in class “j”
4. ACT =0; // initialize the activity
5. FOR k=1,..m // for all existent RBF units
6. d=dist)()(ikTIX xx −
7. ACT=ACT+RBF(d,r)
8. END
9. IF ACT<ov
10. m=m+1; // add new RBF unit

3 http://eigen.tuxfamily.org/index.php?title=Main_Page

11. TIX(m)=i;
12. END
13. END.

Lines 9-12 implement the novelty detection for creating a new
hidden RBF unit.

III. EXPERIMENTAL RESULTS

In order to asses the performances of the SFSVC algorithm
and compare with other classifiers 5 representative datasets
were considered. The first two datasets are from satellite
imagery problems as follows: SATIMG is a classic database
from [11] (n=36, M=6 classes, N=3217 training samples,
Ns=3218 testing samples) while IN6 is a reduced set (n=200,
M=16, N=2000, M=3000) from the original Indian Pine dataset
used in [1]. In both cases a class (asphalt, lake, etc.) has to be
assigned to a hyper-spectral pixel vector from the remote
sensing device. In the last 3 datasets input samples are images
of handwritten characters. OPTD64 is from [11] and has 8x8
pixels per character (n=64, M=10, N=3823, Ns=1797), USPS
is a well known database [12] available from [9] with 16x16
pixels per character (n=256, M=10, N=7291, Ns=2007) and
MNIST is a reduced set from the original MNIST4 where a
small fraction of samples was randomly selected from the
original dataset (N=500 for training and Ns=100 for testing).
Each sample represents an image with n=28x28 pixels.

A. Accuracies and optimal structures
A synthetic view of the best overall accuracies obtained for

the considered databases with all classifier architectures is
given in Fig.1. For each case the architecture was optimized
(radius r and overlap factor ov, type of radial basis and
distance) for best performance.

Figure 1. Overall accuracies for the optimized classifiers.

As seen, SFSVC allows obtaining overall accuracies that
are only slightly under the best attainable (usually via SVM).
With additional LMS tuning SFSVC-T reaches the best values.
Details on the optimized structure and training times for
SFSVC, SFSVC-T, ELM and SVM are given in tables I-IV. In
all cases except SVM training times 321 tttt ++= with 1t time
allocated to TIX generation (or ELM random gen. of weights),

2t time to compute the hidden and output layer and 3t time
allocated to training of the output Adaline (or ELM training
using pseudo-inverse training). Note that in the case of SFSVC
very fast learning is achieved because computing the hidden
layer and training is not necessary, thus 1tt = . For SVM, only
total training time is given. Two types of RBF units are

4 Available: http://yann.lecun.com/exdb/mnist/

375

considered: type=1 (triangular basis function + Manhattan
distance) and type=2 (Gaussian basis function + Euclidean
distance).

TABLE I: OPTIMAL STRUCTURES AND PERFORMANCE FOR SFSVC

Optimal SATIMG IN6 OPTD64 USPS MNIST
(r,ov,type) 0.23, 1.2, 2 0.9, 1.3, 1 7.7, 3, 1 2.95,

0.75, 2
5.3, 0.1,

2
t=t1 0.14 0.14 0.1 0.56 0.027

Acc. % 91.36 75.6 98.44 94.32 87
RBF units 1418 1331 1230 1141 215

TABLE II: OPTIMAL STRUCTURES AND PERFORMANCE FOR SFSVC-T

Optimal SATIMG IN6 OPTD64 USPS MNIST
(r,ov,type) 0.25, 1, 2 1.3 4, 1 7.7, 3, 1 3.3, 1, 2 5.8, 2, 2
t1, t2 t3 0.08, 0.98,

0.62
0.1, 2, 0.7 0.06, 1.2,

0.77
0.38,

7.2, 1.1
0.02,
0.6, 0.1

Acc. % 91.61 79.1 98.44 95.21 88
RBF units 1144 1290 1230 914 434

TABLE III: OPTIMAL STRUCTURES AND PERFORMANCE FOR ELM (C=107)

Optimal SATIMG IN6 OPTD64 USPS MNIST
r (type=2) 2 5 8 18 7
 T1, t2 t3 0, 0.92, 5 0, 2.4, 4.6 0, 0.9, 2.1 0, 7, 7 0, 0.54,

0.1
Acc. % 88,16 77.9 98.1 94.22 80

RBF units 1144 1353 695 903 378

TABLE IV: OPTIMAL STRUCTURES AND PERFORMANCE FOR SVM (C=10)

Optimal SATIM
G

IN6 OPTD64 USPS MNIST

γ (type=2) 1.62 2.8 0.046 0.01 6.4*10-4

 T1+t2+t3 1.29 3.04 1.45 8.41 0.86
Acc. % 91.61 79.6 98.44 95.47 90

RBF units 1219 1346 1076 1521 356

A synthetic view of the acceleration obtained by the SFSVC
algorithm with respect to the other well known algorithms
(SVM, ELM) and the tuned variant SFSVC-T is given in Table
V.) The same computational platform (a laptop with Pentium
2-core CPU T4300@2.1Ghz 3Gbyte RAM) was used and all
algorithms were implemented in C++ compiled as .MEX files
called in Octave 4 to facilitate user interface.

TABLE V: SPEED-UP OF SFSVC WITH RESPECT TO OTHER CLASSIFIERS

Speed-up
(related to)

SATIM
G

IN6 OPTD64 USPS MNIST

SVM 9.21 21.7 14.5 15.0 31.9

ELM 42.3 50.0 30.0 25.0 23.7
SFSVC-T 12.0 20.0 20.3 15.5 26.7

As seen, our new algorithm ensures significant speed-ups of
up to 50 times (for IN6 remote sensing problem with respect to
the usually credited as very fast ELM classifier. In addition we
considered a bigger version of the MNIST (25% of the original
one, to fit with our memory) and the optimized SFSVC with
(r,ov,type) = (4.55 0.15 2) trained this large dataset in only 10.6
seconds using 3559 neurons and achieving 94.2% accuracy.

IV. CONCLUSIONS

A novel type of single-layer classifier architecture, namely
the SFSVC is proposed, where support vectors for RBF hidden

units are selected using a fast supervised (class-dependent)
novelty detection algorithm and no additional training of the
output Adaline (weights in the output layer are assigned directly
to the desired output values assuming that only hidden units
from a class are activated for a given input sample). Results are
extremely encouraging showing speedups of 10 to 50 times
with respect to the ELM (usually credited as very fast learning
paradigm) or SVM, while the obtained accuracies are close to
best attainable using well optimized SVM (typically the loss is
smaller than 1% in SFSVC) . The main speed-up reasons are: i)
eliminating the computation of the hidden layer and of the
output weights training; ii) the use of a supervised selection of
hidden units (a speedup of 1t around M the number of classes
was determined with respect to the unsupervised version
implemented in FSVC [6-8]. Another important advantage of
SFSVC is the extreme simplicity of the training algorithm and
the versatility of basis functions. Consequently it is very well
suited for embedding in specialized computing platforms (e.g.
GPU, FPGA) and for integration into satellite or automotive
sensing units thus ensuring the processing of big-data directly at
the sensor level, such implementations being the subject of our
further research.

REFERENCES

[1] J. Lopez-Fandino, P. Quesada-Barriuso, D.B. Heras, F. Arguello,
"Efficient ELM-Based Techniques for the Classification of
Hyperspectral Remote Sensing Images on Commodity GPUs," in
Selected Topics in Applied Earth Observations and Remote Sensing,
IEEE Journal of , vol.8, no.6, pp.2884-2893, June 2015

[2] Y. Bengio, A. Courville, P. Vincent, "Representation Learning: A
Review and New Perspectives," in Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol.35, no.8, pp.1798-1828, Aug.
2013

[3] G-B. Huang; Z. Bai, L.L.C. Kasun, C. M. Vong, "Local Receptive Fields
Based Extreme Learning Machine," in Computational Intelligence
Magazine, IEEE , vol.10, no.2, pp.18-29, May 2015

[4] Gao Huang, Guang-Bin Huang, Shiji Song, Keyou You “Trends in
extreme learning machines: A review” in Neural Networks, vol 61, 2015.

[5] B. Widrow, A. Greenblatt, Y. Kim, D. Park, “The No-Prop algorithm: A
new learning algorithm for multilayer neural networks”, Neural
Networks, Volume 37, January 2013, Pages 182-188.

[6] R. Dogaru, A.T. Murgan, S. Ortmann, M. Glesner, “A modified RBF
neural network for efficient current-mode VLSI implementation”, in
Proceedings of the Fifth International Conference on Microelectronics
for Neural Networkds and Fuzzy System (Micro-Neuro 96), IEEE
Computer-Press, Lausanne 12-14 Feb. 1996, pp.265-270.

[7] R. Dogaru, I Dogaru,“ An efficient finite precision RBF-M neural
network architecture using support vector”, in Neural Network
Applications in Electrical Engineering, Sept. 2010, pp.127-130.

[8] M. Bucurica, R. Dogaru, "A comparison between Extreme Learning
Machine and Fast Support Vector Classifier", Electronics, Computers
and Artificial Intelligence (ECAI), 2015 7th International Conference on,
On page(s): Y-9 - Y-12.

[9] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for support
vector machines. ACM Transactions on Intelligent Systems and
Technology, 2:27:1--27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

[10] P. Quesada-Barriuso, "Spectral-spatial classification of n-dimensional
images in real-time based on segmentation and mathematical
morphology on GPUs", doctoral thesis, July 2015. Available:
https://citius.usc.es/sites/default/files/tesis/Tese_PabloQuesada.pdf

[11] “UCI-Machine Learning Repository”, Available:
http://archive.ics.uci.edu/ml/

[12] J. J. Hull. “A database for handwritten text recognition research”,
IEEE Transactions on Pattern Analysis and Machine Intelligence,
16(5):550-554, May 1994.

376

