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Abstract—The possibility to exploit emergent computation in a 
naturally inspired complex network, namely the reaction-
diffusion cellular nonlinear network (RD-CNN), is 
investigated. The particular application under focus is image 
processing. It is shown that by implementing a simplified 
discrete-time model and by using the local activity theory to 
locate potentially useful regions in the huge parameter space, 
many useful image processing tasks may be performed in 
reasonable execution time.  Such tasks may include but are not 
limited to: feature extraction, image enhancement, noise 
removal, pattern formation, etc. A framework is provided for a 
systematic design allowing the identification of useful genes 
(sets of parameters) associated with meaningful image 
processing tasks. 

Keywords- nonlinear dynamics; reaction-diffusion systems; 
cellular nonlinear networks; nonlinear image processing; 
emergent computation 

I. INTRODUCTION 
The term “reaction-diffusion” was introduced 50 years 

ago in relationship with a partial differential equation (PDE) 
model often used to model various phenomena, mostly those 
with biological relevance. They are mostly related with 
pattern formation (e.g. Turing patterns [1]) and the 
emergence of spatio-temporal waves. Later [2] Chua 
introduced reaction-diffusion models within the unified 
approach of the cellular nonlinear networks [3] while 
considering a spatial discretization on a cellular grid 
analogous to a resistive grid (as in Figure 1). Reaction in the 
RD-CNN model is associated with multi-ports injecting 
currents in the nodes of various layers of the resistive grid 
while diffusion effects are modeled as currents flowing to the 
neighboring cells through grid resistors connecting the cells. 
Lack of diffusion corresponds to a collection of uncoupled 
cells with no emergent dynamics. Consequently, interesting 
spatio-temporal dynamics occurs only when non-zero 
diffusion coefficients (finite positive resistors in the resistive 
grids) are provided. 

In [4], one of the first design for emergence theory was 
proposed generalizing some theorems from circuit theory to 
the RD-CNN model. This theory, applicable mostly for 2-
layers RD-CNNs and dubbed local activity theory takes 
advantage of the resistive grid approach and expands the 
classical theory of stability by adding supplementary 
conditions for passivity (activity means that the cell is not 

passive). The main result of this theory is the following: No 
emergent behavior is possible in RD-CNN systems with 
their uncoupled cells being passive in all their equilibrium 
points. Observe that passivity as well as stability can be 
tested for a given cell dynamical system (usually a simple 2-
dimensional nonlinear system) around equilibrium points 
(hence the word local meaning linearization around 
equilibrium, in local activity). Consequently, this theory 
gives no prediction about the values for the diffusion 
coefficients but it still allows discarding a large volume of 
the parameter space where the cell is passive. 

 
Figure 1.  The resistive grid model of a RD-CNN  

In recent years there is a tremendous interest in reaction-
diffusion systems, mostly from a modeling perspective. As 
shown in [5][6][7] where the theory of local activity was first 
applied to several well known types of systems (i.e. the 
FitzHugh-Nagumo model of nervous excitability, and the 
Brusselator model for a chemical reaction), a particular 
region called “edge of chaos” (cells are both locally active 
and stable in at least one equilibrium point) was easily 
identified. Picking parameters from that region proved the 
assumptions of the local activity theory valid and of practical 
relevance. So far most research in the area of RD-CNN deals 
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with modeling applications and with complex wave 
computing. Reaction diffusion systems were recognized as 
interesting computing devices [8]. Still there is a lot of un-
explored potential for their use in image processing, 
similarly to the standard cellular neural network (CNN) [9], 
widely used as visual microprocessors with parallel and 
highly efficient implementations. The advantage of using 
RD-CNNs for building image processors stands in their 
inherent parallelism and very simple coupling (resistive 
grids). Several analogue chips were already proposed in the 
literature [10][11][12][13], although we consider that from a 
practical point of view, digital models would be better. 
Speeding-up such models using GPU/CUDA approaches 
[14] are also convenient solutions in terms of good ratios 
between performances and costs. In this paper we propose 
the development of a RD-CNN processor suitable for digital 
implementations (PC, GPU cards, FPGAs, etc.) aiming to 
identify several useful image processing tasks resulting from 
choosing the parameters (genes) within emergence maps 
obtained by applying the local activity theory.  Section II 
introduces the simplified, discrete-time RD-CNN model as 
image processor. A reminder of the local activity techniques 
for locating emergent behaviors is given in Section III.  
Section IV presents some representative genes and their 
associated image processing tasks. Feature extraction, image 
enhancement, noise removal and pattern generation are 
considered.   

II. THE RD-CNN PROCESSOR APPLIED FOR IMAGE 
PROCESSING  

A. The continuous time RD-CNN model  
The mathematical model of the RD-CNN in Fig.1 is 

particularized next, for the 2-layers excitability model of 
FitzHugh Nagumo [15][7].  Consequently, there are two 
diffusion coefficients D1 and D2 defining the coupling.  
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 with the nonlinear functions given by the following 
particular formulae (specific for the FitzHugh-Nagumo 
model): 

 ( ) vucuvuf −−= 3
3
1

1 ,  (3) 

 ( ) ( )abvuevuf +−−=,2  (4) 

The set of cell parameters is called a gene and in this 
particular case, ],,,[ ebac=G .  Following the original 
notation in [7] the c parameter is sometimes dubbed alpha 

and e is dubbed eps. A much larger variety of RD-CNNs 
may be considered by simply changing the two nonlinear 
cells associated with the uncoupled cell.  A prerequisite for 
spatio-temporal emergence is the existence of at least one 
nonlinear function defining the reaction, this is the case of 
equation (3) in our case, plotted in Fig. 2 for various c 
parameters.  

 
Figure 2.  Plots of the equation ( ) 0,1 =vuf for different values of 

parameter c.  

Such a model is equivalent to an excitable sheet where 
images are applied as initial states and the spatio-temporal 
dynamics developing performs various types of 
computations (image processing). Each pixel of an image 
corresponds to a state variable in one of the RD-CNN layers.  
There are many possibilities to control the nature of the 
image processing.   

B. The discrete-time RD-CNN as image processor  
 Integrating the ordinary differential equation (ODE) 
system associated with the RD-CNN requires the use of 
specific numeric methods such as Runge-Kutta. Let us 
consider such an example, where an initial state random 
image with N=100x100 pixels (generated using the rand 
function in Matlab) has to be processed.  In Figure 3 the 
resulting image on the plane “u” is given for both the 
continuous-time model and the discrete-time model to be 
introduced. 

 
Figure 3.  The output image from a RD-CNN processor with parameters 
(a=0.07, b=2.3, eps=-0,1, alpha=1, D1=0.3, D2=2). Left: resulted from an 
integration of the ODE system using ode23 Matlab function; Right: 
resulted from a simplified discrete-time model based on Euler 
approximation. A 10-times reduction of the computation time is observed, 
while the output image is not affected in its essential features.  

Note that the final result is almost the same, although the 
Runge-Kutta integration lasts 10 times more than in the case 
of the simplified, discrete-time model using the simple Euler 
approximation of the time derivatives:  

Since image processing mostly exploits the equilibrium 
type of spatio-temporal dynamics, such simplifications are 
expected to have no major influence on the final results. 

371371



Consequently, in the following the RD-CNN processor is 
implemented according to the following formulae: 
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The output (processed images) are given by the jiu , and 

jiv ,  state variables associated with the two layers, scaled 
accordingly. In the above, the same functions and parameters 
as in the original continuous-time model are used. In addition 
to the cell parameters and diffusion coefficients, two more 
parameters are introduced by this model:  The number of 
iterations T corresponds to a period of time tTΔ  of the 
continuous time model. The output depends on T so it may 
be additionally tuned to get the desired effect. On the other 
hand, numerical simulations show that if crittt Δ>Δ , the 
overall system becomes unstable. From various experiments 
it turns out that 12.0≅Δ critt , consequently in the next we 
will consider 1.0=Δt  if not specified otherwise. It is 
interesting to note that standard gray level images assume 
their pixels [ ]1,1, −∈jix . The gain parameter λ may also 
influence the dynamics and the output image. If not specified 
otherwise,  5.0=λ .  

The image processor described by equation (5) may be 
conveniently implemented not only in any standard 
computing language but also on high computing platforms 
such as GPU/CUDA or OpenCL or FPGAs. Various 
solutions for implementing cellular automata on such 
platforms are recently presented in the literature (e.g. 
[14][16]), making it easily to adjust them to the model (5) 
which has many similarities to any continuous state cellular 
automaton.  

Figure 4 presents the dynamics of both “u” and “v” 
layers for T=200  and for some face image cropped from one 
of the faces in the  database [17]. Note that the dynamics 
may be stopped at any time step, depending on the desired 
processing effect.  

 
Figure 4.  The dynamics of the RD-CNN image processor (5) for T=200 
iterations. The cell parameters were chosen in the “edge of chaos” region.  

III. LOCATING EMERGENT BEHAVIORS, GENES 
ASSOCIATED TO IMAGE PROCESSING TASKS  

As discussed above, there are many parameters 
influencing the dynamics of the RD-CNN and consequently 
the nature of the image processing. The theory of local 
activity provides a convenient and computationally tractable 
method to generate maps in the parameter space defining 
qualitatively different regions. The method was first applied 
for the FitzHugh Nagumo model [5] and the details are 
presented in that work. It is important to note that the entire 
analysis is performed to the uncoupled cell i.e. the 2-
dimensional nonlinear dynamical system (1)–(4) with null 
diffusion coefficients: (i)  First, the equilibrium points iQ  
are determined, i.e. 2-dimensional [ ]vu,  vectors for which 

( ) ( ) 0,, 21 == vufvuf . In our case it is possible to have 1 or 
3 equilibrium points;  (ii) Arround each equilibrium point the 
nonlinear ordinary differential equation is linearized, i.e. 
approximated with a linear ODE system in given by: 
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evaluated for the particular equilibrium point; (iii) Finally, 
classical results of stability theory and more recent results of 
passivity theory [3] are applied to test whether the particular 
equilibrium is in one of the following situations:  
SA: (stable and active)  

( )( ) ( )0  AND  0 AND  4 OR  0 2
2112221122 ><+<> DELTaaaaa

 
P: (stable and passive)  
( ) ( )( ) 4  AND  0a 2

2112221122 aaaa +≥<  
UA: (unstable and active) 
 
None of the above conditions is satisfied.  

The above test is detailed [5] based on the local activity 
theory [3][4] for the case of two positive diffusion 
coefficients. If 02 =D , the tests are slightly different [5] and 
will lead to a much larger passivity region. In other words, 
more interesting emergent behaviors are expected when both 

21, DD  are non-zero. In the above ( )2211 aaT +=  is the 
trace and 21122211 aaaaDEL −=  is the determinant of the 
Jacobian matrix in (6).  

One may prescribe all gene parameters except two of 
them and apply the above tests with a given resolution M for 
some predefined ranges. For instance one may choose: 

( )
M
ibbbbi minmaxmin −+= and ( )

M
j

aaaa j minmaxmin −+=  

Each particular set of parameters ( )ji ab ,   will be projected 
in an image (map) dubbed next an emergence map using a 
color code (Figure 5) associated with the types of 
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stability/passivity and number of equilibrium points found by 
the above test.  

 
Figure 5.  Color code (type number above) associated with various types 

of stability/passivity and number of equilibria for a givem set of 
parameters.  

 Such maps are extremely useful since they allow the 
rapid location of interesting points, based on the local 
activity theory and its corollaries. For instance, the blue 
region associated to passivity will be avoided because in this 
case the theory guarantees that no emergent behaviors occur 
in the network of cells. It was also determined that in order 
to achieve emergent but stable behaviors (of interest for 
image processing dynamics), parameter cells must be 
selected from the type 2,6,7 or 10 regions (i.e. having at least 
one stable and active equilibrium point). On the opposite, 
wave-type dynamics is favored by the selection of parameter 
points in the UA (unstable and active) regions of the 
parameter space (5,6,7,9,10,13). It was also found that most 
interesting emergent behaviors occur taking cell parameter 
points from those regions (type 6 to 13) associated with a 
maximum number of equilibrium points (3 in our case).   

Let us consider such a map in Figure 6. In the next 
section several points in this section of the parameter space 
will be further investigated by effectively running the RD-
CNN image processor (5). Other maps may be also 
considered in order to diversity the image processing tasks.  

 
Figure 6.   Emergence map for a specified region of the a,b parameters.  

IV. IMAGE PROCESSING AND PATTERN FORMATION  
In using emergent computation (often associated with a 

surprise effect) is difficult to have a design approach that is 
similar to the spatial filter design (given a bandwidth and 
other characteristics, one can calculate the parameters of the 
filtering system). Consequently, the approach is rather 

evolutionary: one picks a gene from the parameter space and 
observes the kind of dynamics for various types of images. 
One may select interesting processing functions and fill in a 
catalogue containing many entries using the model of [18] 
for the standard CNN. Such an entry would give the gene, 
other specific parameters (e.g. T or λ ) a linguistic 
description (e.g. “short edges enhancement”) and several 
examples.  

A. Feature enhancement  
Several crops (denoted as images A to E) from face 

images of the [17] database were considered as inputs in the 
following experiments.  Also, a retinal fundus image F from 
[19] is considered here. All these input images were 
normalized to gray scale images with 5.0=λ (Figure 7). 

 
Figure 7.  Test images used as inputs to the RD-CNN image processor (5) 

in order to identify meaningflul genes.  

If not specified otherwise T=200 and 1.0=Δt . Let first 
consider the cell parameter point A: 

1  ,1.0  ,2  ,25.0 =−==−= ceba  in emergence section in 
Fig.6. This point was selected in a region of type 7 with 3 
equilibrium points, 2 of which are stable.  As seen in Figure 
7, while tuning the D1 coefficients one may obtain various 
kind of features from the initial state images. Such features 
may be of interest in various face recognition algorithms 
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since they simplify the input image into a binary one 
preserving the most important features in the faces.  

 

 
Figure 8.  Image outputs (“U” layer) for various values of 1D  and 

8.12 =D , The rest of the parameters correpond to point “A” in the 
emergence map of Fig. 6 

One property of the images in Fig. 8 is the enhancement 
of edges resulting in binary images. The kind of feature to be 
enhanced can be tuned finely by properly adjusting the 
diffusion coefficients.  Let now consider another parameter 
point in the emergence map of Fig. 6, namely point B: 

1  ,1.0  ,4.2  ,0 =−=== ceba , also from the upper part of 
the “type 7” region. The outputs for various values of the 
diffusion coefficients are given in Fig. 9. 

 

 
Figure 9.  Image outputs (“U” layer) for various values of 1D  and 

22 =D , The rest of the paramneters correpond to point “B” in the 
emergence map of Fig. 6 

In this case, various regions from the image are 
segmented, and the parameter 1D  may be used to control the 
selection of higher (small values of 1D ) or lower frequencies 
(large values of 1D ).  Another choice of a cell parameter 
point is within the  
“type 6” region, for instance point C: a=-0.4, b=2.8.  The 
output images for inputs associated to faces A,B,C,E in Fig. 
7 are presented in Fig. 10. 

 
Figure 10.   Output images for cell parameter point C in Fig. 6. The second 
diffussion coefficient is null.  

In the next, we consider 2 sections through the 
emergence map, taken at constant b values. Figure 11 
considers 2.3=b  and presents various types of feature 
extraction obtained when the a parameter is varied from -1 to 
0.  The diffusion coefficients remain constant in all cases, 

1;1.0 21 == DD .  Note that taking 0>a  similar (for same 
value of a ) but negate image processing outputs are 
obtained. Figure 12 presents output results for constant 

2.1=b  and [ ]1.0,6.0−∈a . 

 
Figure 11.   Some image processing tasks for a section trough the 

emergence map of Fig. 6. Here the a parameter is varied. Image “A” in 
Fig.7 was used as input.  
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Figure 12.   Image processing tasks, results of the RD-CNN dynamics for a 
section in the emergenece map of Fig.6. The a  parameter is varied. Image 

“A” in Fig.8 was used as input.  

In all the above examples, the output image is taken from 
the “U” layer corresponding to the nonlinear function given 
by equation (3). In these cases spati-temporal emergence 
manifests such that the cell has only 2 state values (binary 
states) corresponding to binary output images. The output  
images corresponding to the “V” layer (associated to the 
linear function given by equation (4)) are usually gray-level 
images associated to state values varying continuously 
within a given interval.  Note that the binary images obtained 
and shown in Figs. 9-12 have an informational content of 1 
bit/pixel but still preserve features that are useful for 
recognition. Some features are missing and some not, 
depending by the particular gene. Note that such binary 
outputs coming from various genes may be combined in 
order to enhance features of interest in certain computer 
vision applications (face or eye recognition, etc.).  

B. Noise removal  
Let now consider another emergence map (Fig. 13), 

taken for 6.0== αc .  In this case, other new image 
processing methods are revealed for a cell parameter point 
situated in the “type 2” region  E: 

6.0,  10  ,   3,2   ,16.0 ===−= c.-eba .  
The following input images are now considered: a) an 

image with 100x100 random pixels (each varying randomly 
between -0.5 and 0.5), shown in Fig. 14 upper left; b) the 
same random image where some constant value with 
amplitude 0.1 i.e. 10 times less than the noise amplitude is 
added for a square of 21x21 size pixels in the middle.  As 
seen from Fig. 14 where the dynamics of (5) after T=600 is 
depicted, the high frequency noise is completely removed 
(all cells in Fig. 14a are white) while the compact region in 
the middle with 10 times less amplitude than noise (SNR= -
10 dB) is revealed in Fig. 14b. 

 
Figure 13.  Emergence diagram for 6.0=c .  

 

 

 
Figure 14.  An example of noise removal: a) input image is a purely noisy 

image; b) the input image has a compact square in the middle (21x21 
pixels) with amplitude 0.1 added to the noisy image with amplitude 1.  The 

RD_CNN dynamics reveals the compact region covered by noise. 

C. Feature enhancement  
 
 
Coming back to the emergence map in Fig. 6, another 
cell parameter point leading to useful image processing is 
point D: 3.2,07.0 =−= ba . In this case, using the eye 
fundus image F in Fig. 8 as input, the output represents 
an enhanced version where the useful information (blood 
vessels) is emphasized, as seen in Figure 15. 
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Figure 15.  Enhancement of vessels in an eye fundus image for cell 

parameter D and diffusion coefficients given above. 

D. Pattern formation  
In [20] we introduced several measures for emergence. 

One of them in particular considers the spatial dynamics in a 
cellular system where the initial state is chosen such that all 
cells are 0 except a small rectangle in the middle where cells 
are randomly initialized. As shown, there are two major 
forms of dynamics: (i) Implosion, i.e. the area that initially 
was occupied by random values shrinks; (ii) Exploding 
dynamics (growth), characterized by expansion in the whole 
area. More interesting, slow growth was conjectured then to 
be in a close relationship with life-like type of dynamics.  It 
is thus expected to have such a dynamics in the RD-CNN 
with properly chosen parameters. In order to achieve slow 
growth it turns out that only the “U” plane must be initialized 
with a “mid-square” random pattern, while all initial states in 
the “V” plane are set to 0.  The input image for the U plane is 
a 101x101 rectangle with all pixels set to 0 except a 11x11 
square with randomly generated pixels having values 
between -0.5 and 0.5. The emergence map in Fig. 6 was 
considered, with 2.1=b . When the a parameter is chosen 
within the “type 5” region (unstable and active) as expected, 
a growth type of dynamics is present. When the a parameter 
jumps in the “type 2” region (stable and active) the dynamics 
becomes one of imploding type (in both space and 
amplitude). Indeed, the bifurcation value is 26.0−=a . In 
general, given the emergence map, any pair of (a,b) 
parameters located on the boundary between “type 2” and 
“type 5” regions (but inside the green “type 5” region) will 
give the slow growth type of dynamics leading to very 
interesting pattern formations as shown in Figure 16.  

 
Figure 16.   Slow growth (exploding) behaviors when ),( ba parameters 
are chosen in the “type 5” region close to the boundary with the “type 2” 
regions. The upper row corresponds to an imploding behavior just near the 
bifurcation point 27.0−=a . When the a parameter decreases slow 
growth behaviors with interesting pattern formations emerge in the RD-
CNN.  In these examples 6.01 =D  and 22 =D , and the RD-CNN was 
run for 4000 iterations.  

It is interesting to comment on the emerging patterns: 
They are reminiscent of life-like forms where self-replication 
occurs. Indeed, at iteration 2000, two “branches” emerge, 
each growing further up to a point when each branch divides 
into more “beings” such that after 4000 iterations there are 4 
connected objects. The exact shapes and growth speed 
depends not only on the a parameters but also on the initial 
state. The evolution in the last row exhibit highly symmetric 
patterns.  

A gallery of different patterns emerging after T=4000 in 
a slow growth dynamics is presented in Figure 17.  

 

 
Figure 17.   Various patterns emerging in RD-CNN processor for various 

parameters and diffusion coefficients (specified above each picture).  

V. CONCLUDING REMARKS  
In this paper we propose the exploration of cell parameter 

space for a simplified discrete-time model of the reaction-
diffusion CNN showing that a wide variety of image 
processing tasks can be discovered. Processing time is 
reasonable enough to consider such tasks as steps 
(instructions) in more complicated image processing and 
analysis algorithms.  Our focus here was on presenting a 
methodology based on local activity theory to identify 
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regions in the cell parameter space such that taking points in 
these regions gives a good chance to discover a meaningful 
image processing task. Comparison with other specific 
image processing techniques reported in the literature (e.g. 
eye fundus enhancement) is a subject of further research. For 
instance, [21] reports several interesting image processing 
tasks in a cellular nonlinear network (CNN) based on 
universal binary neurons. Their technique involves learning 
of the image processing task in a novel neuron model acting 
as a filter in a local neighborhood of the CNN. Our approach 
involves no learning (and its associated time processing) 
while it is based on identifying useful cell parameter points 
using local activity theory. Moreover, most of the image 
processing tasks in CNN including [21] are based on a strict 
processing of the neighbor pixels (e.g. 3x3 neighboring 
pixels). Instead, the RD-CNN with cells operated in the local 
activity region presents a global spreading effect i.e. 
processing is equivalent to much larger neighborhoods while 
the implementation maintains a very simple and 
consequently fast processing architecture.  

Further research is expected to reveal even more 
interesting image processing tasks while changing the 
nonlinear reaction module and exploring wider regions of the 
emergence maps.  
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