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Abstract— Embedded dictation, i.e. recognizing vocal 
commands in noisy environments, with good accuracy and using 
low complexity implementations is a desirable task with many 
applications. Such applications include automotive infotainment 
solutions particularly when no connectivity is available, personal 
assistants including embedded dictation solutions for disabled 
people, and so on. This paper reports our novel results in 
applying a nonlinear transform (RD-transform) introduced in a 
previous work and inspired form complexity measurements of 
signals generated in cellular automaton. Such a transform is 
compact and has a low computational complexity yet it 
previously proved quite efficient in terms of accuracy for a 
standard task of recognizing user independent dictation of digits. 
Herein, we report results on employing RD-transform on a 
specially designed sound database containing commands for the 
non-critical automotive equipment in a realistic, noisy 
environment. In addition to specific nonlinear transforms, low 
complexity FSVC classifiers were employed proving that good 
accuracies can be achieved using a very convenient 
implementation solution.  

Keywords— speech processing; nonlinear signal processing; 
radial basis neural networks; complex nonlinear networks; support 
vector classifiers. 

I.  INTRODUCTION 
In many circumstances, the use of simple and compact 

electronic devices capable to recognize vocal commands, are 
highly desired. Such circumstances include automotive 
dictation systems [1], disabled people assistants [2] among 
others. Herein the focus would be on an automotive application 
using a proprietary database with 9 particular commands 
uttered inside the vehicle with specific ambient noise. The 
usual approach in speech recognition and dictation is often 
based on implementing relatively complex speech recognition 
systems running on a remote server which may be accessed 
from a remote client with internet access. However, in the case 
of limited or no connectivity access such a system become 
useless. Therefore, in such circumstances embedded dictation 
systems that can be operated independently on any wireless 
connection, are needed. This paper focuses on such kind of 
solution where the aim is to provide a low complexity, yet 
efficient in terms of recognition accuracy, solution. While 
many similar isolated word recognition systems reported in the 

literature employ Mel frequency cepstral coefficients (MFCC) 
analysis combined with HMM or, more recently, using deep 
learning approaches [3], recurrent neural networks [4][5], 
liquid-state machines [6] still the implementation complexity 
remains high, therefore we employ a method based on an 
original approach first reported in [7]. The key ingredient of 
our approach is to consider a simple to implement (low 
complexity, thus convenient for embedded systems) nonlinear 
transform, herein denoted as RDT standing for Reaction 
Diffusion Transform combined with a low complexity 
classifier described in [8]. A remainder of the transform and its 
properties is given in Section II, it basically transforms a signal 
sequence of size n2  into a compressed “spectrogram” with 
only n-3 components. When applied to isolated speech 
recognition problems, the entire utterance representing a 
speech command is split into M sequences the average RDT 
spectrum is computed for each of the M sequences resulting in 
a feature vector with )3( nM  components. Details regarding 
the construction of the feature vector are provided in Section 
III. Such annotated feature vectors provide training and test 
databases for a special radial basis neural network classifier 
optimized to provide an efficient, low complexity, 
implementation while providing a very good accuracy. The 
very fast training allows accurate optimization of its radius 
parameter to optimize accuracy while synapses in the output 
layer are simply 0 or 1 thus leading to a very convenient 
implementation. A detailed description of the classifier is given 
in Section IV, it representing the unsupervised version of [8], 
herein called FSVC-NT. The experimental setup including the 
construction of a proprietary database (since no other similar 
was found available on the public domain) and the best results 
achieved with our solution (average accuracy of up to 89% for 
9 vocal commands with 100% accuracy for some of the 
commands) are reported in Section V. Concluding remarks and 
research perspectives are given in Section VI.   

II. REACTION-DIFFUSION TRANSFORMS 

A. Definition of the reaction-diffusion transform 
 The basic idea to define the RDT comes from the definition 
of a clustering coefficient C ranging in the domain [0,1] from a 
signal associated with the distribution of states in a 1-



dimensional cellular automata [9]. Let us consider such a 
sequence    1,..0  wtts  forming a “signal frame” with w 
samples (in cellular automata framework, w were adjacent 
cells). In the following is assumed that w is a power of 2, 
with  wn 2log .  In the above it is assumed that signal 
samples are bounded i.e.  1,1ts . The clustering coefficient 
is computed as: 
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where S(0) denotes the “highest frequency” component of 
the RDT transform, obtained when all samples of the signals 
within the w sized frame were considered. Lower frequency 
“spectral values” S(k) are computed similarly but on decimated 
sequences i.e. applying the same above formulae on frames 
formed of )2/( kw  samples, with )4,..(1  nk .  A scaled 
version of the RDT, denoted SRDT (Scaled RDT) is computed 
as above but (1) is now replaced with equation (2) below. The 
scaled version proved to improve the recognition accuracy 
while being less sensitive to the amplitude of spoken utterance: 
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In [7] it was shown that for a simple isolated speech 
recognition task (digit recognition from multiple speakers) 
SRDT with optimized parameters followed by SVM classifier 
achieved recognition accuracy close to 88%. As noted, the 
computational complexity of computing RDT transform is low, 
no multiplication is needed but only summations and absolute 
value computations. Computing RDT for a window size w 
requires O(w) computations.   

B. Examples of applying RDT  
In Fig. 1 a raw, not segmented signal (utterance saying 

“avarie” (damage in Romanian language) from our database is 
considered (sampling rate 44Khz) and the corresponding RDT 
and SRDT are presented bellow for window sizes w=2048.  

 

Fig. 1. Spectograms obtained from an utterance using RDT and SRDT 
applied to sound frames of size w=2048 composing the signal.  

Note that in the case of SRDT (less sensitive to sound 
amplitude) even the noisy regions present bold spectrograms. 
In a practical isolated sound application, SRDT or RDT is 
applied for a segmented part of the utterance containing the 
relevant sound. In this work an “economical” segmentation is 
applied i.e. from a sequence of sound like the one in Fig.1 only 

the samples satisfying   ts  are preserved. The value 
01.0  was experimentally found to produce a relatively 

good segmentation for the recorded signals in our database. 
This proposed segmentation scheme can be easily applied and 
although it removes some samples from the main part of the 
utterance, the remaining signal remains perfectly intelligible 
and thus is expected that an automated recognition system 
would correctly classify the utterance.  Fig. 2 shows the result 
of applying the above mentioned scheme to the signal in Fig. 1.  

 

Fig. 2. Segmented sound signal using the threshold 01.0 . From top to 
bottom: siganal, RDT spectograms, SRDT spectograms.  

III. CONSTRUCTING FEATURE VECTORS FOR THE EMBEDDED 
DICTATION PROBLEM 

In any recognition system the raw signal must be 
transformed into a fixed size annotated feature vector in order 
to be learned by a classifier.  Since segmented raw signals have 
a variable number of samples, it is not possible to define the 
feature vector simply as a collection of their RDT 
spectrograms. Therefore, a specific scheme of constructing a 
feature vector must be specified, as follows:  

The algorithm considers M as a predefined number of 
segments in which the segmented voice signal is split. Let us 
assume M=3. For the segmented signal in Fig.2 composed of 
14 spectrograms there should be 5=round (14/3) spectrograms 
per segment for the first M-1 segments and the remaining 4 are 
left to represent the last segment. For each segment an average 
spectrogram is computed thus resulting in a feature vector 
formed of )3( nM average spectrograms. The above scheme 
would produce the same size of the feature vector for any 
variable number of spectrograms associated to different lengths 
of signals.   Consequently, for any given isolated signal to be 
recognized using the RDT method, there are two parameters to 
be optimized in order to achieve maximal accuracy: the 
number of segments M and the size w of the signal window (or 
equivalently  wn 2log   ) submitted to the RDT or SRDT.  

IV. FAST SUPPORT VECTOR CLASSIFIERS  
The architecture of FSVC was first introduced in [10] as a 

convenient to implement in hardware (but in software as well) 
alternative to Support Vector Machine (SVM). It is essentially 
a radial basis function neural network differing from the 
traditional architecture in several original features: i) there is no 



training needed for centroids of the RBF neurons in the hidden 
layer, instead they are simply selected among the training 
samples, using a novelty detection algorithm; ii) the training of 
the system eventually reduces to training the Adaline (linear 
neurons) in the output layer. As shown in a recent paper [8] 
using a proper initialization of the output layer there is no need 
for training the Adaline thus resulting in a very fast training of 
the classifier, with at least one order of magnitude when 
compared to extreme learning machine (ELM) considered 
today one of the fastest to train neural networks. In terms o 
performance, FSVC exhibits similar accuracy to SVM or ELM 
on a wide range of problems as shown in [11][12]  

Herein we use the “no-tune” unsupervised version of the 
SFSVC1  exposed in [8], allowing a very fast training speed 
and thus a relatively fast optimization of the r (radius) and prag 
(threshold) parameters.  A brief description of the algorithm 
follows: The feature vectors computed as indicated in Section 
III form a training and a test set. The training set 

  kkTR dx ,  where Nk ,..1  is the sample index, N is the 
number of samples, kx  is an input (feature) vector, each with a 
dimension )3(  nMnf . The label of the sample is expressed 
using a Q-dimensional vector dk formed of 0 valued elements 
except 1, kjd  indicating that the sample k belongs to class 
“j” among all possible Q classes.  In a “no-tune” FSVC 
structure  1,0, kjd are also the fixed-valued synapses of the 
output Adaline layer.  The test set TS has a similar structure 
yet contains different Ns samples and it is used only to evaluate 
the generalization performance of the classifier. For the 
problem considered herein there is a balanced distribution of 
samples with 50% in the train and the remaining 50% in the 
test set. The average accuracy (Acc.) is considered herein as a 
performance measure. It represents the fraction of correctly 
assigned samples in the test set, by the FSVC classifier.  

RBF units and radius: It is assumed that each hidden 
neuron unit is defined by a RBF function where a distance 
between the actual input sample  nfi uuu ,..,..1u  and the 

corresponding support vector (centroid)  nfi ccc ,..,..1c  can 
be computed in any desired way. In this work we discuss of 
dtype=1 distance in the case of Hamming distance 

 


nf

i
ii cud

1
 and dtype=2 in the case of the Euclidean one. 

Any other distance formula can be considered. As for the RBF 
functions, there is a wide palette of possibilities and no 
restriction, herein we consider only rbftype=1 for a simple 
(hardware-oriented) triangular function defined as: 

  )/4.01,0max(, rdrdRBF   and rbftype=2 for the classic 
(but not so convenient for hardware-oriented) Gaussian 
kernel  22 2/exp),( rdrdRBF  . In all cases, the radius r is 
an important parameter and is basically the main parameter that 
has to be optimized to ensure best generalization performance. 

                                                           
1 A Matlab implementation of the FSVC is given at 
http://www.mathworks.com/matlabcentral/fileexchange/4969 
5-fast-support-vector-classifier--a-low-complexityalternative- 
to-svm-/  with a GitHub link to a much faster implementation using MEX 
files.  

As seen later, a finer tuning may be considered in using the ov 
(overlap factor) which is usually taken 1ov .  

The fast training of the FSVC-NT (no-tune FSVC) consists 
in a single epoch for browsing all samples in the training set TR 
and constructing a hidden layer by specifying the centroids for 
the RBF layer as specific feature vectors (inputs) from the 
training set (also called support vectors). The result of the 
training process is an index table  mp iiiiTIX ,..,.., 21  storing 
integer values to locate the selected support vector among the 
feature vectors in the TR. Consequently, the p RBF-neuron of 
the hidden layer has the support vector

pip xc   as centroid. 

The number of hidden neurons m is always smaller than the 
number of samples N in the training set.  A novelty mechanism 
is used to select if the current sample from the train set is 
selected as a support vector or not (as detailed in [8]). 
Essentially it is selected only if the activity of the hidden layer 
is smaller than the overlapping threshold ov. Using the test set 
to evaluate accuracy, a certain number of training cycles using 
various dtype, rbftype, radius r, and ov are executed until the 
best accuracy is obtained for a given dataset.  In order to asses 
the accuracy on the test set the following SFSVC Prediction 
algorithm is used:  
1. FOR j=1,..Q  sc(j)=0;  END // initialize output scores 
2. FOR p=1 .. m 
3.   k = TIX(p)= pi    // locate the center in TR 

4.   kdistd xu,  
5.   z = RBF(d,r)    // calculate the output of the hidden layer 
6.   FOR j=1,..Q    // calculate the output scores  
7.        IF 0, kjd  sc(j) = sc(j)+z ;  END 

8.   END  
9. END  
10. Predicted_class= Arg(max(sc)) 
=============================================  
Misclassified samples are counted and the accuracy is reported 
as the ratio between all correctly classified samples and all 
samples in the test set.     

V. EXERIMENTAL SETUP AND RESULTS 
A number of 9 vocal commands were considered and for 

each of them a number of about 20 different utterances were 
recorded (44 Khz sampling rate) in the specific noise 
environment of the automobile. The list of commands and their 
associated labels is presented below using the format {[label 
number, utterance (Romanian), English translation, number of 
samples],…}: {[1, avarii, damage, 21],[2, claxon,  horn, 22],[3, 
frana, brake, 20],[4, inainte, before, 22],[5, inapoi, back, 17],[6, 
lumina, light, 22],[7, radio, radio, 21],[8 start, start, 22],[9, 
stop, stop, 24]. There are at all 191 samples, each of the 
utterances being transformed into feature vectors using the 
RDT and the SRDT methods with their two parameters to be 
optimized (M – the number of segments, ranging from 4 to 6; w 
– the size of the window with the corresponding n ranging 
from 9 to 11;  r – radius). Other elements changed during the 
optimization process are the types of distances and radius, with 
a preference for dtype=1 and rbftype=1 only for specialized 
hardware implementations where they have lower complexity 
than other choices. Table I gives a synthesis of the main results 



for the case of RDT while Table II gives the results for SRDT. 
The cases giving the best accuracies are emphasized. In all 
cases, the threshold 25.0ov  

 TABLE I: OPTIMAL STRUCTURES AND PERFORMANCE FOR RDT-BASED 
CLASSIFICATION USING NT-FSVC 

Experiment a B c d e f 
M 5 5 6 6 4 6 

w  (n) 2048 
(11) 

1024 
(10) 

 

1024 
(10) 

1024 
(10) 

512 (9) 1024 

D-type 2 1 1 2 1 1 
RBF-type 2 2 2 2 2 1 

r 0.3 1.54  1.63 0.3 1.25 2 
Acc. % 73.9 81.2 85.4 84.3 77 68.7 

As seen in the above table, an optimal performance (85.4% 
recognition accuracy) is achieved using Gaussian radial basis 
function and Manhattan distance for a proper number of 
segments (M=6). Last column indicates the best result obtained 
when using the most convenient RBF function and distance, 
unfortunately in such cases the recognition accuracy is 
significantly reduced. In [7] it was found that using properly 
segmented (in the sense of isolating the utterance from silence) 
signals, better performance was achieved. When SRDT was 
used for this automotive dictation database, a better accuracy 
was observed as well, as reported in Table II.  

TABLE II: OPTIMAL STRUCTURES AND PERFORMANCE FOR SRDT-BASED 
CLASSIFICATION USING NT-FSVC 

Experim
ent 

a b c d e 

M 4 5 6 4 4 
w  (n) 1024 (10) 

 
1024 (10) 1024 (10) 512 (9) 512 

(9) 
D-type 1 1 1 1 1 

RBF-type 2 2 2 2 1 
R 0.23 1.82 1.9 1.3 1.96 

Acc. % 82.2 88.5 81.2 84.3 70 
As indicated in the above table, a slightly increased 

accuracy (88.5%) is now obtained with a proper optimization 
of the M parameter. Again, the best choice for distance and 
basis function is Manhattan distance with Gaussian basis 
function. When triangular basis function is used (column “e”) 
the accuracy decreases.  The confusion matrix for the 
experiment “b” in Table II (best result) displayed in Fig. 3 
indicates that samples from some classes are 100% correctly 
recognized while some utterances (last two commands) have a 
low recognition rate.  

 

Fig. 3. Confusion matrix on the test set for the best optimized SRDT+FSVC 
dictation system. Note that only two classes of commands (last two) give 
accuracies lower than 85.7%.  

VI. CONCLUSIONS 
A low complexity system for embedded dictation is 

proposed, based on a simple to compute RDT transform 
inspired from computing complexity indices in cellular 
automata. The name “reaction-diffusion’ stands from the 1-
dimensional Laplacian used in reaction-diffusion cellular 
nonlinear networks inspiring this transform. The 
implementation complexity of RDT is much smaller than 
needed for MFCC, which is often used is such applications. 
Accuracies obtained from a proprietary database with 
utterances representing verbal commands with specific 
automobile environment background noise are rather good, up 
to 100% for some of the particular commands, thus comparable 
to results obtained by other approaches [1] for similar tasks. 
Further research will focus on improving the segmentation 
scheme to increase accuracy.  
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